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We indicate the possibil i ty of using the well-known method of the equivalent problem in heat 
conduction theory to calculate turbulent wall jets. The method is used to calculate the veloc-  
ity profi les and the excess heat content at c ross  sections and also the friction drag and heat 
t ransfer  coefficients for sem[unbounded jets. 

Among the various computational schemes based on replacing the boundary layer  equations by a [[near 
heat conduction equation, the method of the so-cal led equivalent problem in heat conduction theory [1] has 
been widely used. 

The method has been successful ly  applied to calculate many pract ical ly  important cases  in complex 
jet flows and gas jets.  In par t icular ,  problems in the propagation of isothermal jets of finite dimension, 
the diffusion of a gas jet in a s tat ionary medium and in a s l ips t ream, a three-dimensional  jet, the develop- 
ment of a jet with complex initial velocity profile, e tc . ,  have been solved. 

We consider  the possibil i ty of applying this method to the investigation of semtunbounded (wall) tur -  
bulent jets.  

Following [1], we t rans form f rom the actual coordinates x and y to certain (derived) coordinates 
and V such that the field of the jet flow is described by an equation of the form 

OL __ 0% (1) 

O~ &l ~ ' 

where L = pu 2 for a dynamic, and L = pUcpAt for  a thermal  problem. 

We know that for  the c lass  of free flows of liquid and gas jets the condition for the change of the va r i -  
ables leading to an equation of the heat conduction type has the form ~[ = ~(x) (i = 1 and i = 2 respect ively 
for  a dynamic and a thermal  problem), 7/ ~ y. 

If we use the equivalent problem in heat conduction theory to calculate semtunbounded turbulent jets, 
as distinct f rom free jets, we have to deform both the x and y coordinates.  Then, as experience shows, 
~i = ~(x), *?i = r/(y) and the connection between the derived coordinates ~?t and y can be established start ing 
f rom the equation V[ = yOJ2 (strictly for the se l f - s imi la r  part  of the jet), for }l = cxa .  

Equation (1) is solved under the same boundary conditions for which the boundary layer  equation has 
to be integrated. Fo r  example, for  a dynamic problem, the initial and boundary conditions have the form 

~ l = O ( x = O )  { L=p~176 for 0 .<.~l~b0,  
0 for b 0 ~< rh_ G co , (2) 

~1 > 0 (x>O) L = 0 for ~ = Oandv h = eo 

for a semiunbounded submerged jet and 

{L =PoU~ for O~(.~l,.Gb0, 
~l=O L = p |  for bo-~Th~OO, 
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Fig. 1. Compar i son  of the computed and exper imenta l  veloci ty  
prof i les  in a semiunbounded jet  (m = 0): a) x /b  0 = 9.7; b) x 
/b 0 = 19.5; c) x/b 0-- 26.9; d) x/b 0 = 39.0. 

Fig. 2. The derived coordinates ~ and ~/as functions of x and y. 

~ 1 ~ 0  I L 2 0  for I ] 1 : 0  , (3) 
D| for ~]1= co 

for  a semiunbounded jet  developing in a s l i p s t r eam.  

The solution of Eq. (1) for  the initial and boundary conditions (2) and (3) is known [2]: 

Oou'--~o:=-- ~ -  ~ 2 - ~ - ~ l ) + e r f \ ~ ]  + e r f / ~  , (4) 

t 

where erf  (t) = (2fl-~r) e-ZZdz is the e r r o r  integral;  m = p~u~/00u0 is the eoeur ren t  p a r a m e t e r .  

0 
We note that (4) was obtained under the assumption that the momentum flux distr ibution in the initial 

c r o s s  section of the jet is uniform. However,  the p resence  of a boundary layer  at the sur face  and at the 
pipe wal ls  in the actual jet  outflow preven ts  us f r o m  obtaining a uniform profi le  of pu 2. Hence, s t r ic t ly  
speaking, the momentum flux distr ibution density at var ious  d is tanees  f r o m  the end of the pipe has to be 
ealeulated taking aceount of the initial nonuniformtty in the prof i le  of P0U~. 

We t r a n s f o r m  f rom pu2/00u~ d i rec t ly  to veloci t ies  and t e m p e r a t u r e s  by the usual a lgebraic  convers ion  
[1]. The t rans format ion  equation ( = f(x) is defined f r o m  exper iment  by  compar ing  the computed and ex- 
pe r tmenta l  eurves  for  the var ia t ion in the max imum value of 0u 2 along the length of a f lat  plate.  

Exper iments  on the study of the law of propagation of a wall  jet  in a hot s l i p s t r e a m  were  made for  
0 ~- m ~_ 1 and 1 ~- w ~- 3.0, where  w is the noniso thermie i ty  p a r a m e t e r .  A detailed descr ipt ion of the ap-  
para tus ,  method of measu remen t ,  and analysis  of the exper imenta l  resu l t s ,  and also the fundamental  r e -  
suits of the experiments are given in [3, 5]. 

Let us compare the results of the computation for m = 0, using (4), with the experimental results of 
[5] to indicate the possibility of applying the me thod of the equivalent problem in heat conduction theory to 
the calculation of semiunbounded turbulent jets. 

Figure 1 shows the distribution of u/u0, obtained experimentally, at various distances from the end 
of the pipe and compares them with the values computed from (4). The dotted lines show the computed 
velocity profile u/u 0 = f(~i) when only one derived coordinate } is deformed, and the continuous lines show 
the same velocity profile when we take account of the equation Hi = ~I(Y)- 
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Fig.  3. Tangen t ia l  f r ic t ion  s t r e s s  d is t r ibut ion  at s e c -  
t ions  of a semiunbounded jet  (m = 0): 1) x /b  0 = 9.72; 
2) x /b  0 = 19.5; 3) x /b  0 = 39. 

We see  f r o m  the g r aphs  that when we take note of the equation ~ = ~11(Y), computa t ions  based  on (4) 
ag ree  s a t i s f a c t o r i l y  with the e xpe r i m e n t a l  data  (points). 

F igu re  2 shows the equat ions  4-~t/b 0 = f(x/b0) and ~l/b0 = fl(Y/b0) obtained by  c o m p a r i n g  the solut ion of 
Eq. (1) with exper iment .  The va lues  of ~ and p obtained, a s s u m i n g  that 4-~1/b 0 = c(x/b0)~ and rh/b 0 = (y 
/b0)~ , f r o m  the above equat ions  w e r e  equal to 2/3. This  expe r imen ta l  fact  impl ies  that the method of the 
equivalent  p r o b l e m  in heat  conduct ion  t heo ry  can be used to ca lcu la te  semiunbounded je ts  e s sen t i a l ly  when 
only one (longitudinal) coord ina te  is de fo rmed .  Then it is suff ic ient  to d e t e r m i n e  the second coord ina te  in 
the f i r s t  approx imat ion  f r o m  the equation r h = yO~/2 if ~l = cxC~. 

In turbulent  semiunbounded je ts ,  in addition to the ve loc i ty  prof i le  (excess  t e m p e r a t u r e ,  c o n c e n t r a -  
tion of mat te r ) ,  the g r e a t e s t  i n t e re s t  is in the d i s t r ibu t ion  of the tangent ia l  f r ic t ion  s t r e s s e s  and the flux 
dens i ty  throughout  the mixing zone,  the va r i a t ion  in the f r i c t ion  d rag  coeff ic ient  (heat t r ans fe r )  along the 
length of the wall ,  etc.  

C o m p a r i n g  Eq. (1) with the bounda ry  l a y e r  equation (in r e a l  var iab les )  we can obtain the fol lowing 
exp re s s ion  for  the nond imens ionaI  tangent ia l  f r ic t ion  s t r e s s :  

- pu%-- dh [ ~ 02 ( ~ )  dY d~, (5) 

11 

where  pW~ = puv/(pu2)o, x = x/b0, ~-I = ~l/b0, Y = Y/b0, ~l = ~l/b0 a re  nondimens iona l  va r i ab le s ;  v is the 
t r a n s v e r s e  ve loc i ty  componen t  defined by the equation of cont inui ty.  

We note that when ~l = ~(x) and ~1 ~ Y, Eq. (5) eas i ly  t r a n s f o r m s  into the f a m i l i a r  equat ion f o r  t u r -  
bulent  f r i c t ion  obtained in [1]. 

F r o m  (5) we ca lcu la ted  the d i s t r ibu t ions  of the tangent ia l  f r ie t ion  s t r e s s e s  at a c r o s s  sec t ion  of a 
s u b m e r g e d  (m = 0) semiunbounded jet  fo r  th ree  va lues  of x /b  0. In doing so we used (4) and the equat ions 
(,(x) and r/l(y) (Fig. 2) found f r o m  expe r imen t .  The r e su l t s  of the ca lcu la t ion  a re  shown in Fig.  3. The 
cont inuous  l ines  show the nond imens iona l  ve loc i ty  p ro f i l e s  and the dotted l ines  the tangent ia l  f r ic t ion  
s t r e s s  d i s t r ibu t ions .  

We see f r o m  the g raph  that the law fo r  the change in the tangent ia l  f r ie t ton  s t r e s s e s  at c r o s s  sec t ions  
of a semiunbounded  jet  c lose  to the wall  is n e a r l y  l inear ,  while f a r  f r o m  the wall  it is s i m i l a r  to the law for  
the change  in r/(Ou2)o fo r  a f r ee  s u b m e r g e d  jet.  It is no tewor thy  that the turbulent  f r i c t ion  r = - p u ' v ' ,  c o m -  
puted by the method of the equivalent  p r o b l e m  in heat  conduct ion theory  (Eq. (5)) is nonze ro  at the point 
whe re  the ve loc i ty  is at its max imum.  We note that the fact  that  the turbulent  f r ic t ion  is nonze ro  at the 
point of m a x i m u m  ve loc i ty  in semtunbounded je ts  has been r e m a r k e d  in o ther  pape r s  [4, 6, etc.  ]. 
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F o r  r/ = 0 (y = 0), Eq. (5) yields the value of the tangential  f r ic t ion s t r e s s  at the wall: 

Cr/2 = (Ou+9---~ - dx a~11 
0 

The resu l t s  of calculat ing the d rag  coefficient  f rom this equation are  given in Fig. 4. F igure  4 also 
gives a compar i son  of the exper imenta l  r e su l t s  of s eve ra l  authors [7, 8, etc. ]. The eontinuous l ines in 
Fig. 4 show the resu l t s  of d i rec t  m e a s u r e m e n t s  of the drag  eoeff ictent  by P r e s t o n ' s  method (curves 2, 4) 
and of a heated f i lm (eurve 3), while the dotted l ines show the ealculat ion of Cf f r o m  the Ileynolds analogy 
and the heat t r an s f e r  data (curves 5, 6) and by the method of in tegral  r a t ios  (curve 1). 

We see f r o m  the graph that the resu l t s  of the ealculation (curve 7) agree  sa t t s fae to r t ly  with the data 
of other  a u t h o r s .  

Compar ing  (1) for  a heat flux (L = puepAT) with the energy equation for  a moving liquid, as was done 
for  the fr ict ion s t r e s s  and the fr ic t ion drag  coefficient,  we can obtain computat ional  equations for  the heat 
flux distr ibution at a c r o s s  section of a walt  jet  and for  the heat  t r a n s f e r  along the length of a f iat  plate.  
Thus,  for  example,  the specif ic heat flux at the wall  (r/2 = y = 0) is defined by the equation 

r  

PoUocpAT = -  d----~, d'r h drh' (7) 
0 

where  ~(x) and V2(Y) are the der ived coordinates ,  to be defined by exper iment ,  differing in genera l  f r o m  
(t and Vl. However,  as the resu l t s  of analyzing the exper imenta l  data on the distr ibution of the excess  
heat  content at a c r o s s  section of the jet  showed, in the f i r s t  approximat ion we can take 42 ~ $1 and 172 = r h. 
Taking account of this, f rom the equation der ived above for  the Stanton number ,  we obtain the following 
equation: 

r  

7"0- r~ ax O on ~, ~ an~ . (8> 
0 

The resu l t s  of calculat ing the nondimensional heat t r a n s f e r  coeff icient  f r o m  this equation are  shown in 
Fig. 5. F igure  5 also shows the exper imenta l  equation Nu = f (Re, x, T) f r o m  var ious  pape r s  and also the 
resu l t s  of analyzing the exper imenta l  r e su l t s  (of this and other invest igat ions [4, 7-9]). 

We see f r o m  the graph that the values  of the heat t r a n s f e r  coefficient  (curve 3), eomputed f r o m  the 
method of the equivalent p rob lem in heat eonduction theory,  under  the assumption that (2(x) -- ~t(x), deviate 
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Fig. 4. Variation in the fr ic t ion drag  coeff icient  along a flat  plate in a wall  jet  (m = 0): 1) f r o m  the 
data of [11]; 2) f r o m  the data of [7]; 3) f rom the data of [8]; 4) f r o m  the data of [12]; 5) f r o m  the 
data of [10]; 6) f r o m  the data of [9]; 7) computat ion by the method of the equivalent p rob lem in heat 
conduction theory (Eq. (6)). 

Fig. 5. Variat ion of the heat t r ans f e r  coeff icient  along the length of a fiat  plate in a noniso thermal  
jet  (m = 0): 1) f r o m  the data of [7]; 2) f r o m  the data of [9]; 3 and 4) calculat ion by the method of 
the equivalent p rob lem in heat conduction theory  with P r  T = 1 and 0.8 respect ively;  5-7 and 8, 9) 
exper imenta l  data f rom [5] and [4]; 5) T0/T w = 1.10; 6) T0/T w = 1.64; 7) T0/T w = 2.44; 8) T0/T w 
= 0.88; 9) To/T w -- 1.08. 
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sys t ema t i ca l ly  f r o m  the exper imenta l  r esu l t s .  A be t t e r  co r respondence  between the r e su l t s  is obtained if 
we assume,  as for  f ree  jet  flows [1] that ~l(x)/~2(x) = P r  T ~ 0.8 (curve 4). 

Thus, the compar i sons  in Figs .  1-5 of the resu l t s  of calculat ing the veloci ty  prof i les  and the excess  
heat  content at va r ious  c r o s s  sect ions ,  arid also the fr ict ion drag  and heat t r an s f e r  coefficients ,  with the 
exper imen ta l  r e su l t s  show that the method of the equivalent p rob lem in heat  conduction theory  can su cce s s -  
fully be used to calcula te  the local and integral  c h a r a c t e r i s t i c s  of a semiunbounded jet. 

The method we have discussed is p romis ing  for  the calculation of wall  je ts  propagat ing in a nontso-  
t he rma l  s l i p s t r eam,  for  calculat ing the ef fec t iveness  of a gas  sc reen  etc. It makes  it poss ib le  to gene r -  
alize the exper imenta l  ma te r i a l  and c a r r y  out a more  detailed analys is  of the exper imenta l  r esu l t s .  
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N O T A T I O N  

is the denstW, kg/m3; 
is the veloci ty,  m/sec;  
is the heat capaci ty ,  J/deg; 
[s the je t  t e m p e r a t u r e  at the exit f rom the pipe, in the surrounding medium, at the wall  
and the cu r r en t  t e m p e r a t u r e ,  ~ 
a re  the longitudinal and t r a n s v e r s e  coordina tes  of the boundary layer ,  m; 
a re  the der ived coordina tes ,  defined f r o m  exper iment ;  
ts the width of exit  c r o s s  section, m; 
ts the fr ic t ion s t r e s s ,  N/m2; 
Ls the heat  flux at walt ,  J/m2; 
ts the fr ict ion drag  coefficient; 
ts the Stanton number;  
ts the Nussel t  number;  
Ks the Reynolds number;  
Ks the nondimensional  dis tance f r o m  the end of the pipe; 
ts the cu r r en t  p a r a m e t e r .  
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